
SPBC: Leveraging the Characteristics of MPI HPC
Applications for Scalable Checkpointing

Thomas Ropars
École Polytechnique Fédérale

de Lausanne (EPFL)
Lausanne, Switzerland

thomas.ropars@epfl.ch

Tatiana V. Martsinkevich
INRIA, University of Paris Sud

Paris, France
tatiana.mar@inria.fr

Amina Guermouche
Université de Versailles

Saint-Quentin en Yveline
Versailles, France

amina.guermouche@uvsq.fr

André Schiper
École Polytechnique Fédérale

de Lausanne (EPFL)
Lausanne, Switzerland

andre.schiper@epfl.ch

Franck Cappello
Argonne National Laboratory

Argonne, USA
cappello@mcs.anl.gov

ABSTRACT
The high failure rate expected for future extreme-scale su-
percomputers requires the design of new fault tolerant solu-
tions. Most existing checkpointing protocols are designed to
work with any message-passing application but suffer from
scalability issues at extreme scale. In this paper, we take a
different approach: We identify a property common to many
HPC applications, namely channel-determinism, and intro-
duce a new partial order relation, called always-happens-
before relation, between events of such applications. Lever-
aging these two concepts, we design a protocol that com-
bines an unprecedented set of features. Our protocol called
SPBC combines in a hierarchical way coordinated check-
pointing and message logging. It is the first protocol that
provides failure containment without logging any informa-
tion reliably apart from process checkpoints, and thus, with-
out penalizing recovery performance. Experiments run with
a representative set of HPC workloads demonstrate a good
performance of our protocol during both, failure-free execu-
tion and recovery.

1. INTRODUCTION
As High Performance Computing (HPC) systems keep

growing in scale, providing efficient fault tolerance mech-
anisms becomes a major issue. Studies on future exascale
systems highlight that, considering that the expected mean
time between failures (MTBF) will range from one day to
a few hours, simple solutions based on coordinated check-
points saved to a parallel file system (PFS) will not work:
more time will be spent dealing with failures than doing
useful computation [11, 14, 28].

A checkpointing protocol for large scale HPC systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SC ’13, November 17 - 21 2013, , USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00
http://dx.doi.org/10.1145/2503210.2503271.

should provide good performance in failure-free execution
and in recovery while limiting the amount of resources used
for fault tolerance. These goals can be conflicting. Deal-
ing with high failure rate requires a high checkpointing fre-
quency to limit the extent of rollbacks in time. But increas-
ing the frequency can also impact the failure-free perfor-
mance. Message logging can be used to avoid rolling back
all the processes but it implies saving the message payload
in the node memory [21], while the memory size per CPU
available in future exascale systems is going to be smaller
compared to the current situation. Coordinated checkpoint-
ing, on the other hand, does not require saving any messages
in the nodes’ memory but if a failure occurs all processes are
required to roll back to the last checkpoint.

Hybrid protocols, combining coordinated checkpointing
and message logging, have been recently proposed for fault
tolerance at large scale [7, 25, 29]. A hierarchical proto-
col that applies coordinated checkpointing inside clusters of
processes and message logging between clusters, can limit
the impact of a failure to one cluster while logging only a
subset of messages. Existing hierarchical solutions still have
some limitations related to message logging: To be able to
replay messages in a valid order after a failure, they need
to log all non-deterministic events related to message de-
livery occurring during execution. However, event logging,
even when implemented in a distributed way, implies a use
of additional resources [29] and can impair failure-free per-
formance [31]. The authors of [29] propose not to log events
reliably to improve event logging performance, but they do
not ensure failure containment if some events are lost. In
this paper we propose a hierarchical protocol that does not
log any events during the failure-free execution, but still en-
sures failure containment.

The protocols described in [7, 25, 29] work with all
message-passing applications. In this paper, we take a dif-
ferent approach: We identify properties common to our tar-
get applications, namely SPMD MPI HPC applications, and
we leverage these properties to design a fault tolerant solu-
tion that can be more efficient than existing protocols at
large scale. According to our observation, scientific SPMD
applications are composed of a well-defined set of compu-
tation and communication patterns that can be interleaved

or overlapped. After a failure rolled back processes have to
replay some communication patterns. It is then necessary to
ensure that logged messages are delivered in the communi-
cation pattern or iteration of a pattern they belong to. Note
that in an MPI application incorrect message delivery can
only happen if the MPI_ANY_SOURCE wildcard is used.

To formalize our observation, we introduce two new con-
cepts. First, we introduce a new property that we found to
be common to many MPI HPC applications, called channel-
determinism. It states that for a given set of input parame-
ters the sequence of messages sent on communication chan-
nels is the same in any valid execution. This property ex-
tends the previously defined send-determinism property [9]
and states that execution path of most scientific applications
is not impacted by the relative order of message delivery.
Thus we conclude that event logging is not required since
we do not have to ensure the total order of message deliv-
ery during recovery. The second concept is always-happens-
before relation. It defines the causal dependency between
messages that are inherent to the program and allows us to
formalize the previously mentioned notions of patterns and
iterations.

While existing checkpointing protocols consider the hap-
pened-before relation [23] that orders events of an execution,
we show how the always-happens-before relation can be used
to design a simple protocol for channel-deterministic appli-
cations. Channel-determinism allows avoiding logging infor-
mation about the reception order of messages during failure-
free execution, and the information about always-happens-
before relations is used for deciding on which message to
receive next during recovery when MPI_ANY_SOURCE is used.

The contribution of our work can be summarized as fol-
lows. We introduce channel-determinism and always-happens-
before relation in Section 3. We present our protocol called
Scalable Pattern-Based Checkpointing (SPBC) in Section 4.
We describe our implementation of SPBC in MPICH in Sec-
tion 5. This section also introduces our programming inter-
face that can be used to explicitly describe always-happens-
before relations in the code where an incorrect message de-
livery may occur during recovery. Finally, we evaluate the
performance of SPBC in failure-free execution and in recov-
ery on a representative set of HPC benchmarks and applica-
tions in Section 6. Our evaluation shows that 1) our solution
requires only few (if any) modifications of the applications;
2) SPBC is efficient both in failure-free execution and in
recovery.

2. STATE OF THE ART
In this section, we position our work with respect to re-

lated work. We present the standard fault-tolerant solution
based on coordinated checkpointing, and then discuss the
use of message logging for providing failure containment.

2.1 Coordinated Checkpointing in HPC Sys-
tems

Coordinated checkpointing is commonly used in HPC sys-
tems for dealing with crash failures, because it is easy to im-
plement and it does not require any data to be saved apart
from process checkpoints. However, it has two main dis-
advantages that can impair its scalability [14, 28], namely,
the contention it may introduce in the PFS and the lack
of failure containment. Considering that coordinated check-
pointing can cause more than 50% overhead in performance,

replication has been considered as a possible alternative [16].
However, with recent improvement in the checkpointing tech-
niques, replication is often considered to be too costly for
dealing with crash failures [29]. But it still can be of inter-
est for handling silent errors [17].

The relatively low bandwidth of the PFS means that sav-
ing or retrieving a checkpoint of the whole application state
can be very slow (in the order of tens of minutes [27]) and will
impact both failure-free and recovery performance. Multi-
level checkpointing solutions based on local storage and era-
sure codes have been proposed [3, 27] to deal with this issue.
They allow high checkpoint frequency while achieving good
failure-free performance. Note that multi-level checkpoint-
ing can be efficiently combined with hybrid checkpointing
protocols [4].

Another disadvantage of coordinated checkpointing is that
when a failure occurs, all processes roll back to the last
checkpoint. Causal dependencies between processes can
be taken into account to roll back only the processes that
causally depends on the failed one [22]. However, in MPI
HPC applications, all processes become causally dependent
on each other very fast [18]. Rolling back all the processes
is costly because it may cause an IO burst when retrieving
the last checkpoint. Additionally, re-executing the lost com-
putations after a rollback is a big waste of resources and,
consequently, of energy.

Restarting from the last coordinated checkpoint, i.e.,
from a consistent global state, allows to deal with non-
deterministic applications [15]. But failure containment,
i.e., limiting the consequences of a failure to a subset of pro-
cesses, is a key to fault tolerance at extreme scale [11, 10].
Providing failure containment with a checkpointing protocol
requires introducing message logging.

2.2 Message Logging
Message logging can be used to limit the extent of roll-

backs in space [15]. Messages are logged during failure-free
execution and replayed in the same order after a failure.
Message delivery events need to be saved reliably while the
payload can be saved in the sender’s memory [21]. Mes-
sage logging protocols (pessimistic or causal) provide per-
fect failure containment because only the failed process has
to roll back. But this comes at the cost of a high over-
head in failure-free execution [31]. On the other hand, op-
timistic message logging protocols, where events are logged
asynchronously, perform better but failure containment is
ensured only if no event is lost after a failure.

Even when optimistic message logging is used, the cost of
logging events reliably can be unacceptably high at scale [31].
It has been proposed to limit the number of events to log by
taking into account the semantics of MPI calls and to dis-
tinguish events by logging only the ones that correspond to
a non-deterministic behavior of the MPI library (e.g., use of
MPI_ANY_SOURCE or MPI_Waitany) [5]. However, there is no
evidence that such a solution would be efficient enough at a
very large scale. To improve the performance of optimistic
event logging, it has been recently proposed to simply log
the events in the memory of a node and to combine message
logging with coordinated checkpointing to avoid the domino
effect in case many events are lost due to a failure [29]. It
should be mentioned that actually most recent evaluations of
message logging protocols implement logging in the memory
of dedicated nodes [6, 8].

In a message logging protocol, message payload is saved in
the node memory. For some applications, logs can grow very
fast leading to a huge memory use. An alternative is to use
a hybrid protocol that combines coordinated checkpointing
and message logging protocols hierarchically: processes are
partitioned into groups, or clusters, and coordinated check-
pointing is used within a cluster, while message logging is
used for inter-cluster messages [7, 19, 25]. Such a hybrid
approach can dramatically reduce the amount of data to be
logged [30].

A hybrid protocol provides failure containment by ensur-
ing that if a failure occurs, only the processes in the failed
cluster have to roll back. However, it still requires that all
non-deterministic events, even those related to messages ex-
changed inside a cluster, are logged during failure-free exe-
cution to ensure that the exact same execution can be repro-
duced after a failure [7]. Thus, the performance of these pro-
tocols can also be impaired by the overhead of event logging.
To deal with this issue, [19] proposes a hybrid protocol that
leverages the send-determinism common to many MPI HPC
applications [9]. In a send-deterministic application, a pro-
cess sends the same sequence of messages in any valid ex-
ecution for a given set of input parameters (see Definition
1). This protocol does not require to log any events during
failure-free execution and can leverage the send-determinism
property to correctly re-order most messages during recov-
ery. However, in cases where the process to receive from is
not specified in the call (use of MPI_ANY_SOURCE), processes
need to synchronize during the replay of logged messages to
ensure that a message is re-sent only when all messages it
causally depends on have been replayed. Our experiments
show that this synchronization can slow down the recovery
after a failure (see Section 6.5).

In this paper, we leverage two newly defined concepts for
MPI HPC applications, namely channel-determinism and
always-happens-before relation, and propose a hybrid proto-
col that does not log any delivery events during failure-free
execution and does not require synchronization between re-
playing processes during recovery. In contrast to [29], our
protocol always guarantees that the consequence of a fail-
ure is limited to a subset of processes. However, our solu-
tion is limited to channel-deterministic applications while
[29] works with all applications. In the next section we
define channel-determinism and the always-happens-before
relation.

3. PROPERTIES OF MPI HPC APPLICA-
TIONS

We start by presenting our message-passing application
model. Then we introduce the concepts related to MPI.
Finally, we present the channel-deterministic property and
the always-happens-before relation.

3.1 Model
To model a message passing parallel algorithm, we con-

sider a set P = {p1, p2, ..., pn} of n processes, and a set C of
channels connecting any ordered pair of processes. Channels
are assumed to be FIFO and reliable but no assumption is
made about the system synchrony. The channel from pro-
cesses pi to pj is denoted cij .

Suppose an execution exec(A) of an algorithm A whose
initial state is Σ0 = {σ0

1 , σ
0
2 , ..., σ

0
n}, where σ0

i is the initial

state of process pi. An execution is driven by a set Sexec(A) of

events eki , where eki is the kth event in process pi. The state
of process pi after the occurrence of eki is σk

i . The events in
Sexec(A) are partially ordered by Lamport’s happened-before
relation [23], denoted →.

Starting from initial state Σ0 an algorithm may go along
different execution paths. We define EA as a set of execution
paths that A can follow when no failure occurs: EA is the set
of valid executions of A. The set SA includes the partially-
ordered sets of events SE corresponding to the executions
E in EA. The sub-sequence of SE consisting of events on
process pi is denoted SE |pi. Similarly, the sub-sequence of
SE consisting of events on channel c is denoted SE |c

Note that in this paper we consider crash failures and we
assume that multiple concurrent failures can occur.

3.2 MPI Applications
For a detailed description of MPI, we refer the reader to

the MPI specification [26]. Here we provide a short descrip-
tion of the main concepts related to point-to-point commu-
nication. MPI also provides primitives for collective opera-
tions but, unless hardware-specific information is provided,
we assume that collective operations are implemented on top
of point-to-point communication.

An MPI message is defined by a payload and a message
envelope (the metadata). The metadata contains message
identification information: the source identifier (src), the
destination identifier (dst), a tag (tag) and a communicator
(comm). The communicator specifies the communication
context of the message. Any MPI communication operation
is associated with a communicator. Hence, to adapt the
general model presented in Section 3.1, we consider that a
channel is also defined in the context of a communicator:
There can be multiple channels between two processes, one
for each communicator they belong to.

Figure 1 shows the events we associate with a point-to-
point MPI communication. It describes a scenario where a
process p1 sends a message m to a process p2. It shows the
general case when a process uses MPI_Isend (resp. MPI_Irecv)
to post a send (resp. recv) request and then, MPI_Wait to
wait for the request to complete.

MPI_Isend(m,req1)

MPI_Irecv(req2)

Packet 1 Packet 2 ... Packet n

post(req2) match(req2,m)

MPI_Wait(req1)

complete(req2)

MPI_Wait(req2)

P1

MPI

Library

MPI

Library

P2

send(m)

deliver(m)

Figure 1: MPI point-to-point communication

At the MPI library level, we associate a post(req) and
a complete(req) event with the time a reception request
is posted to the library and completed at the library level
respectively. We also introduce two events at the application
level: an event send(m) corresponds to the time when the
application process calls the MPI function to initiate the
sending of message m; an event deliver(m) corresponds
to the time when a received message m is available to the
application process.

We define a last event at the MPI level, match(req, m), to

represent the matching between an incoming message m and
a posted reception request req. In a reception request the
source, tag and communicator of the message to receive can
be specified. A request is matched with the first received
message (based on the first packet of the message) whose
metadata matches the request. The FIFO property of MPI
channels guarantees that if two messages are sent through
the same channel and they both can be matched with the
same request, the first sent message will be matched first1.

There are two main sources of non-determinism in MPI
communication. First, instead of defining the source in a
reception request, one can use the wildcard MPI_ANY_SOURCE

to receive the next message from any sender. Second, among
the functions that check the completion of requests, some of
them show non-deterministic behavior that depends on the
speed of message arrival (e.g., MPI_Test, MPI_Waitany).

3.3 Identifying Events
We want to be able to compare events related to MPI

communication in different executions of an application. To
do so, we introduce a per-channel sequence number. This
seqnum is implicit in the standard, but it exists in all
MPI libraries to ensure the FIFO property. Thus, a mes-
sage m is uniquely identified by a payload and a tuple
{src, dst, comm, seqnum} of metadata. We say that mes-
sage m1 of execution E1 and message m2 of execution E2 of
algorithm A are the same if their payload and metadata are
the same. We compare the events associated with sending
and receiving of messages in the same way: send(m1) and
send(m2) are the same if m1 and m2 are the same. To be
able to compare reception requests from different executions,
we also associate each request with a sequence number given
at the time the request is posted. Thus, a reception request
is uniquely identified by a tuple {src, dst, comm, seqnum}.

3.4 Channel-Determinism
To design an efficient checkpointing protocol for HPC ap-

plications, we propose to design a protocol that can work for
most HPC applications, instead of designing a protocol that
can work for all distributed applications. For this reason
we consider only SPMD applications as defined in [24] and
master-worker applications are excluded.

As it has been shown in [9], SPMD MPI applications are
mostly deterministic even if the MPI interface allows some
non-deterministic behavior. More precisely, [9] defined the
send-deterministic property:

Definition 1 (Send-deterministic algorithm). An
algorithm A is send-deterministic if, given an initial state
Σ0, for each p ∈ P and ∀S, S′ ∈ SA, S|p and S′|p contain
the same subsequence of send events.

Essentially it means that the relative order of message re-
ceptions has no impact on the order and on the content of
the messages sent by a process. This definition enforces a
total order of all the messages sent by a process. We intro-
duce channel-determinism as a new property that enforces
the total order only per channel:

Definition 2 (Channel-deterministic algorithm).
An algorithm A is channel-deterministic if, considering an

1Note that it does not guarantee that the message reception
is completed first.

initial state Σ0, for each channel c ∈ C and ∀S, S′ ∈ SA,
S|c and S′|c contain the same sub-sequence of send events.

Obviously, all send-deterministic applications are channel-
deterministic. But channel-determinism encompasses more
communication patterns. For instance, the communica-
tion pattern illustrated in Figure 4, that can be found in
BoomerAMG [20], is channel-deterministic but not send-
deterministic (see Section 5.1).

Send-determinism was used in [18] and [19] to avoid log-
ging of the order of message delivery in a message logging
protocol. However, note that these protocols would not
work with channel-determinism because they rely on the
per-process total order of send events to infer happened-
before relations between messages during recovery. If two
send events should occur in a different order after a failure,
wrong happened-before relations will be inferred, potentially
leading to a deadlock. Our protocol described in Section 4
is not based on the happened-before relation.

3.5 The Always-Happens-Before Relation
A direct consequence of channel-determinism is that the

set of messages exchanged in any failure-free execution of
an algorithm is the same. Assuming that a process does
not cancel requests and that all posted requests are eventu-
ally completed, we can also assume that the set of reception
requests used to receive these messages is also always the
same. Thus, given an initial state Σ0, in any valid execution
of a channel-deterministic algorithm the set of send, post
and deliver events is the same. We call it the set of commu-
nication events. We also include match events in this set.
match events may differ from one execution to another be-
cause a reception request is not necessarily always matched
with the same message. However, if we denote for instance
match(req,) the event associated with the matching of re-
quest req, such an event can be found in all valid executions
of an algorithm.

We define the always-happens-before relation as a par-
tial order relation on the set of communication events of
a channel-deterministic algorithm. This relation is defined
over the set of valid executions of the algorithm:

Definition 3 (Always-happens-before relation).
Consider an algorithm A, all executions in EA, and assume
that e1, e2 are two communication events existing in all ex-
ecutions in EA. If e1 → e2 in all executions, then we say

that e1 always-happens-before e2, denoted e1
A→ e2.

Note that the always-happens-before relation and the
happened-before relation are not equivalent. The always-
happens-before relation is a property of the algorithm A,
whereas the happened-before relation applies to an execution
of A. The always-happens-before relation aims at expressing
the causal relations between messages that a programmer
describes in the design of her algorithm.

4. THE SPBC PROTOCOL
This section describes the SPBC protocol. We seek to

obtain a hierarchical protocol that does not need to log re-
ception events to provide failure containment, and that also
does not require the processes to synchronize during recovery
to correctly re-order logged messages in contrast to [19]. The
basic SPBC protocol is described in Algorithm 1. By default
this protocol may not work with all channel-deterministic

Algorithm 1 SPBC protocol for process pi
Local Variables:
1: clusteri /* ID of the cluster of process i */
2: Logsi ← ∅

3: Sending message msg on channel cij
4: cij .seqnum← cij .seqnum + 1
5: if clusterj 6= clusteri then
6: Logsi ← Logsi∪ (cij , cij .seqnum, msg)

/* Avoiding sending unnecessary messages during recovery */
7: if cij .seqnum > cij .LS then
8: Send (msg, cij .seqnum) on channel cij
9: cij .LS ← cij .seqnum

10: Upon (msg, seqnum) on channel cji
11: cji.LR← seqnum
12: Deliver msg to the application

13: Upon checkpoint
14: Execute Coordinate Protocol inside clusteri
15: Save (Statei, Logsi) on stable storage

16: Upon failure of process Pj

17: if clusteri = clusterj then
18: Restart from last (Statei, Logsi) on stable storage
19: for all outgoing channels cij such that clusterj 6= clusteri

do
20: Send(Rollback, cij .LR) on cij

21: Upon (Rollback, seqnumrb) on channel cji
22: Send(lastMessage, cji.seqnum) on cij
23: for all (cij , seqnum,msg) ∈ Logi such that seqnum >

seqnumrb do
24: Send (msg, seqnum) on cij /* messages are sent in the

order of their sequence number */

25: Upon (lastMessage, seqnum) on channel cji
26: cji.LS ← seqnum

algorithms, especially if it includes MPI_ANY_SOURCE wild-
cards, as we explain in Section 4.2. Such an algorithm A
has always-happens-before relations in failure-free execution
that the SPBC protocol may not be able to guarantee after
a failure, leading to an invalid execution. In Section 4.3, we
explain how A should be modified into an algorithm A′ to
ensure that SPBC is always able to ensure a valid execution
with respect to the always-happens-before relation despite
crashes.

4.1 Description of the Protocol
SPBC is a hierarchical protocol where processes are par-

titioned into clusters and coordinated checkpointing is used
inside each cluster (line 14) while inter-cluster messages are
logged in the memory of their sender (line 6). When a fail-
ure occurs, all processes belonging to the cluster where the
process crashed roll back to their last checkpoint (line 18).
Processes in other clusters replay missing messages from the
logs in the same order as they were sent during failure-free
execution (line 24). The sequence number of the last re-
ceived message (cji.LR) is stored for each incoming channel
to know which messages need to be replayed from the logs
after a failure (line 23). The sequence number of the last
sent message (cij .LS) is stored for each outgoing channel to
know which messages a process that rolls back has to re-
send during recovery (line 7): If the destination has already
received a message in the current state, it is not needed to
send it again.

It can easily be shown that such a protocol cannot lose
messages. Coordinated checkpointing ensures that the state
of intra-cluster channels remains consistent despite failures.

On inter-cluster channels, messages are either available in
the logs or will be regenerated during recovery if the sender
rolled back before sending the message. However, unlike hy-
brid protocols [7, 25] that save the order of message delivery
during failure-free execution, the protocol described in Al-
gorithm 1 could lead to aa invalid execution after a failure
if non-deterministic MPI calls are used by the application
because it does not know how to correctly order logged mes-
sages coming from different channels.

4.2 Difficult Cases for Recovery
We identified two cases that could create problems dur-

ing recovery. The first case is related to the use of
MPI_ANY_SOURCE. The second case is related to the use of
non-deterministic completion functions. To illustrate these
cases, we consider a scenario with three processes (see Figure
2). Processes p0 and p1 are in one cluster while process p2 is
in another cluster. There is an always-happens-before rela-
tion between deliver(m0) and deliver(m2): During failure-
free execution, m1 cannot be sent before m0 is received and
m2 cannot be sent before m1 is received. We describe two
cases where processes p0 and p1 roll back after a failure,
and where during recovery deliver(m2) could occur before
deliver(m0) if m2 is replayed from the logs.

4.2.1 Case 1: Faulty matching between requests and
messages

In Figure 2, process p1 uses anonymous reception requests
to receive m0 and m2. During recovery, message m0 is resent
by p0 during its re-execution whereas message m2 is replayed
by p2 from its logs. Thus, p2 does not have to wait for m0

to be replayed to send m2. If m2 is received before m0 at
the MPI level, it is delivered to the process p1 first, leading
to an invalid execution. Note that in this scenario, if p1 did
not use MPI_ANY_SOURCE to receive messages but explicitly
tried to receive first from p0 and then from p2, there would
be no problem during recovery.

Figure 2: Scenario with MPI_ANY_SOURCE

4.2.2 Case 2: Faulty request completion order
Even if anonymous reception requests are not used, some

scenarios can lead to an invalid execution. These scenarios
involve non-deterministic completion functions. In Figure 3
we assume that process p1 posts two named reception re-
quests to receive messages m0 and m2 respectively. Then p1
checks the completion of the two requests at the same time
using MPI_Waitany. During failure-free execution, since m2

cannot be sent before m0 is received, m0 will always be de-
livered first. However, during recovery, since m2 is replayed
from the logs, it may be delivered first, leading again to a
non-valid execution.

In this case, the problem comes from the fact that the pro-
cess is trying to concurrently complete the reception requests

Figure 3: Scenario with MPI_Waitany

for messages m0 and m2, but deliver(m0)
A→ deliver(m2).

Obviously, trying to complete the two requests concurrently
is useless since m2 cannot be received before m0 in a correct
execution. It is important to mention that this situation
is different from a case where MPI_Waitany is used to com-
plete the requests from a set of real concurrent reception
requests as soon as possible, i.e., to receive from a set of
messages that can arrive in any order during a correct exe-
cution. Here the reception of m0 and m2 are not concurrent

in the sense that deliver(m0)
A→ deliver(m2). We think that

in this specific case, MPI_Waitany can always be replaced by
MPI_Wait without harming performance, and so, we choose
not to handle this case.

4.3 Matching Based on IDs
To avoid faulty matching between messages and requests

during recovery with SPBC, we propose to add an extra
identifier to every message and to every reception request
(Algorithm A′). We also specify the conditions that such
identifiers should implement to ensure that the execution of
A′ with SPBC will always lead to an execution in EA despite
failures.

The scenario described in Section 4.2.1 shows that a re-
quest can be matched with only some messages in a valid
execution of an algorithm. For each request in the applica-
tion, we can define a matching set :

Definition 4 (reception request matching set).
A message m is in the matching set Mreq of a reception
request req if, given an initial state Σ0, ∃E ∈ EA that
includes event match(req,m).

We say that message m and request req are mismatched
if, during recovery, m is matched with req although m is not
in the matching set of req. To avoid the mismatch after a
failure, we propose to add an extra identifier to each message
(id(m)) and to each request (id(req)) in the application, and
to allow the matching between a request and a message only
if they have the same identifier. To ensure that mismatches
cannot occur during recovery, it is enough to implement the
two following conditions:

1. ∀req, ∀m ∈Mreq, id(m) = id(req).

2. If m and req can be mismatched after a failure, then
id(m) 6= id(req).

The second condition could be replaced by a stronger one.
Namely, if m 6∈ Mreq, then id(m) 6= id(req). However, this
condition would require more efforts to be implemented.
Moreover, this condition is obviously not necessary: if no
MPI_ANY_SOURCE wildcard is used, requests and messages
cannot be mismatched even during recovery. To refine the
second condition, we formulate the following theorem:

Theorem 1. Using SPBC, a message m and a request
req can be mismatched during recovery if and only if req is
an anonymous reception request and

match(req,)
A→ match(,m).

Proof. It should be mentioned that the mismatch we
consider is the first occurring in the execution. Of course,
once one mismatch has occurred, other mismatches can oc-
cur and involve even named reception requests.

Since applications are channel-deterministic and we do not
consider the problem identified in Section 4.2.2, a mismatch
can only involve an anonymous reception request. Indeed, if
no anonymous request is used, the matching between mes-
sages and requests is done per channel. Since logged mes-
sages are re-sent on the channel in the same order as during
the failure-free execution, an execution where messages are
replayed from the logs is indistinguishable from a failure-free
execution when channels are considered separately.

Then, to show that a mismatch can occur between
a message m and an anonymous request req only if

match(req,)
A→ match(,m), we show that it cannot oc-

cur in any other cases. The first case is match(,m)
A→

match(req,). The second case is when there is no
always-happens-before relation between req and m, that

is match(,m) 6 A→ match(req,) and match(req,) 6 A→
match(,m)

We first assume an anonymous request req and a message

m 6∈Mreq such that match(,m)
A→ match(req,). By defi-

nition, in any valid execution match(,m)→ match(req,).
Since match(req,) does not depend on any mismatch, the
execution is valid until match(req,) occurs. It implies that
match(,m) has already occurred when match(req,) oc-
curs. Since a message can be matched with only one request,
m cannot be mismatched with request req.

Then we consider the case where (a) match(,m) 6 A→
match(req,) and (b) match(req,) 6 A→ match(,m). In this
case, we show that m ∈ Mreq. Indeed, we can deduce from
(b) that ∃E1 ∈ EA where match(,m) → match(req,).
Thus, m can be received at the MPI level before req is
posted. But we deduce from (a) that m is not always
matched when match(req,) occurs. Thus, since req is an
anonymous reception request, ∃E3 ∈ E where req is matched
with m.

Based on Theorem 1, the two conditions for identifiers in
algorithm A′ can be rewritten as follows:

1. ∀req, ∀m ∈Mreq, id(m) = id(req).

2. If req is an anonymous reception, then ∀m such that

match(req,)
A→ match(,m), id(m) 6= id(req).

Since these conditions can be expressed using the always-
happens-before relation, it means that they are based on
the properties of algorithm A. Studying solutions to auto-
matically detect always-happens-before relations in an MPI
program is out of the scope of this paper. Therefore we do
not propose an automatic transformation from algorithm A
to algorithm A′. Instead, in the next section we propose an
API to allow the programmer to manually do the transfor-
mation.

5. IMPLEMENTATION

This section describes our API to transform algorithm A
into A′ as discussed in Section 4.3. It also discusses the main
points related to the implementation of SPBC in MPICH.

5.1 An API to Transform A into A’
There is a link between Theorem 1 and the way a program-

mer ensures the correct matching of messages and anony-
mous reception requests during a failure-free execution. If
one logical part of the application involving communica-
tion (a communication pattern) has anonymous reception re-
quests, the programmer has to make sure that these requests
cannot be mismatched with messages from other patterns
or from other iterations of the same pattern. To avoid mis-
matching with other patterns, one solution is to use tags as it
is done in the example of Figure 4. But to avoid mismatches
between iterations of a pattern that includes anonymous re-
ception requests, the only solution is to ensure that no pro-
cess can start iteration n+ 1 before all processes finished it-
eration n2. This requires building an always-happens-before
relation between messages from different iterations, e.g. us-
ing a barrier or another collective operation. We propose an
API to make these relations explicit.

The API allows defining communication patterns and iter-
ations inside a pattern. A communication pattern is defined
by pattern id and each iteration inside a pattern is identi-
fied by iteration id. The identifier attached to each mes-
sage and request is a tuple (pattern id, iteration id) that
corresponds to the active pattern when the communication
function is called. All communications that are not inside
a programmer-defined pattern are associated with a default
communication pattern. The identifiers are then used dur-
ing matching between messages and requests to avoid mis-
matches: A message and a reception request can be matched
only if they have the same identifier.

The API has three primitives. It is important to mention
that these primitives do not involve any communication with
other processes:

• pattern_id DECLARE_PATTERN(void): generates a
new pattern id.

• BEGIN_ITERATION(pattern_id): The pattern
pattern id becomes the active pattern. Its iteration id
is incremented by one.

• END_ITERATION(pattern_id): The default communi-
cation pattern is restored.

Figure 4 illustrates how to use the API. This code is a sim-
plified version of a pattern found in the application Boomer-
AMG [20]. This example is interesting because it is channel-
deterministic but not send-deterministic. This code imple-
ments a data-dependent communication algorithm: Each
process knows which processes it should contact based on its
local data (first for-loop) but it knows neither which rank it
is going to receive from nor how many ranks it is supposed
to receive from [2]. Therefore, to receive messages from their
neighbors the function MPI_Iprobe with MPI_ANY_SOURCE is
used. A special tag tag1 is associated with these messages
to avoid mixing them with other messages. When a process

2This is not a requirement added by SPBC. It is the only way
to get a correct MPI code when a communication pattern
includes anonymous reception requests.

receives a message, it immediately sends a response with
tag tag2 to the sender, which makes the code only channel-
deterministic. Finally, when a process has received all the
responses, it starts a termination algorithm (not described
here for the sake of simplicity) to ensure that all processes
received all messages.

p a t t e r n i d id=DECLARE PATTERN() ;
BEGIN ITERATION(id) ;
for (i = 0 ; i < contac t s ; i ++){

MPI Irecv (buf2 , . . , i , tag2 , r r eq [i]) ;
MPI Isend (msg1 , . . , i , tag1 , . .) ;

}
while (! terminate){

MPI Iprobe (MPI ANY SOURCE, tag1 ,
. . , &probe f l ag , s t a t u s) ;

i f (p r o b e f l a g){
proc=s t a t u s .MPI SOURCE;
MPI Recv (buf1 , . . , proc , tag1 , . .) ;
MPI Send (msg2 , . . , proc , tag2 , . .) ;

}
MPI Testal l (contacts , rreq , &f l a g) ;
i f (f l a g){ /∗ code to d e t e c t

g l o b a l t erminat ion ∗/}

}
END ITERATION(id) ;

Figure 4: Modified code including MPI_ANY_SOURCE

Executing several iterations of the unmodified version of
this pattern in an execution without failures cannot generate
mismatches between messages and requests from different
iterations because the termination algorithm ensures that
an iteration is finished on all processes before the next one
starts. However, after a failure, if some processes should
replay messages from logs, messages from iteration n + 1
could be send before all recovering processes finish replaying
iteration n, creating a risk of mismatch. Modifying the code
as in Figure 4 is enough to ensure that a process that recovers
from a failure would never match a message from iteration
n+ 1 with a request from iteration n.

Note that being able to declare multiple patterns and to
count iterations separately for each pattern is required to be
able to deal with cases where only a subset of the processes
is involved in some communication, e.g. in the context of a
sub-communicator.

Note on the Use of the API.
Based on the example of Figure 4, one may think that

using the API associated with SPBC is very restrictive with
respect to the programming model and can only accom-
modate with synchronous communication patterns. It is
not the case. First, recall that any application that does
not include anonymous reception requests can be run as it
with SPBC. In this case, it can include all kinds of asyn-
chronous communication. Second, when an application in-
cludes anonymous reception requests, the programmer has
to build always-happens-before relations in her code, inde-
pendently from SPBC, to ensure that messages from a com-
munication pattern including anonymous requests cannot
get mixed up with other messages. It does not prevent
from using asynchronous communication as long as the re-

quired always-happens-before relations exist. The only ques-
tion that is hard to answer is whether it is easy to iden-
tify the patterns including anonymous reception requests in
codes, and to mark them out using our API. Based on our
experience, and considering the six applications studied in
Section 6, it is usually the case.

5.2 Integration in MPICH
We implemented SPBC in MPICH-3.0.2. In the follow-

ing, we describe the implementation of the matching be-
tween messages and requests based on identifiers and the
way logged messages are replayed during recovery.

5.2.1 Matching Messages and Requests
To implement matching based on extra identifiers we de-

fined, we include in the header of each message the tuple
(pattern id, iteration id) of the active pattern at the time
the send function is called. The same thing is done for each
reception request. We modified the matching function of
MPICH to compare the pattern id and the iteration id of
the message and the request, additionally to comparing the
source and tag. When an inter-cluster message is logged in
the memory of its sender, the corresponding identifier is also
logged and replayed during recovery.

5.2.2 Replaying messages
When a failure occurs, the processes in the cluster where

it happened roll back to the last checkpoint and others pre-
pare to start replaying messages from the logs. They could
immediately send all their messages to the processes that
are recovering, but this would overload the recovering pro-
cesses and slow down their execution. On the other hand,
we do not want a recovering process to unnecessarily wait
for a message that is available in the memory of its sender.
We implement the following simple flow-control mechanism
to avoid this problem.

To avoid deadlocks during recovery, we need to log in the
memory of each process the total order in which the send
requests are posted, and the order in which they are com-
pleted. Indeed, trying to complete two send requests that
correspond to large messages (implying a rendezvous proto-
col) in an order that is different from the failure-free execu-
tion can lead to a deadlock if the dependencies inside the
code imply that one cannot be completed before the other.
Note also that send requests are not always completed in
the order they are posted, which is why we need to log both
pieces of information individually. Finally, to ensure that re-
covering processes will never be waiting for small messages,
we allow the replaying processes to pre-post a set of send
request before trying to complete some of them and poten-
tially getting delayed by a rendezvous protocol. We observed
that allowing up to 50 pre-posted messages per process was
providing good performance. We used this value in the ex-
periments presented in Section 6.

6. EVALUATION
In this section, we present a detailed performance evalu-

ation of SPBC. Using a representative set of HPC applica-
tions and mini-applications from the NERSC8 benchmark
suite3, we evaluate its performance in failure-free execution,

3http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-
nersc-8-trinity-benchmarks

its memory footprint as well as its performance in recov-
ery. We also present a comparison with the performance
of HydEE [19] in recovery. Due to the current limitations
of HydEE, this comparison is done using some of the NAS
benchmarks.

6.1 Experimental Setup
Experiments are run on a 64-node cluster. Each node

has two 2.5 GHz Intel Xeon CPUs (4 cores per CPU), with
16GB of memory per node. Nodes communicate over In-
finiBand 20G. Operating system is Linux (kernel 3.0.0-2).
Experiments are run with MPICH-3.0.2 using IPoIB.

We run a representative set of mini-applications (MiniFE,
MiniGhost, Boomer-AMG, GTC, MILC) and applications
(CM1). They span a variety of algorithms used in different
scientific fields: MiniFE is a representative of finite element
solver applications; MiniGhost implements finite difference
stencil with ghost cells boundary exchange; Boomer-AMG
(simply called AMG in the following) is a parallel algebraic
multigrid linear solver used for problems on large unstruc-
tured grids; GTC represents a 3D Particle-in-cell application
that simulates evolution of a system of gyrokinetic particles;
MILC performs simulation of SU(3) lattice gauge theory
used in quantum chromodynamics. Finally, CM1 is a 3D
nonhydrostatic atmospheric model used for modeling atmo-
spheric phenomena. We used the following problem sizes:
800x800x800 for MiniFE and MiniGhost, 512x100x100x100
for AMG, 1280x640x200 for CM1, and 8x8x8x8 sites per
MPI tasks for MILC. GTC was run with micell = 800 and
npartdom = 8. For all applications, the memory footprint
per MPI process ranges between 200 and 700 MB.

Out of six applications, four (MILC, MiniFE, AMG, GTC)
use anonymous receptions. We modified the code of these
four applications by adding our API functions as explained
above. In MILC, MiniFE and GTC, only one communica-
tion pattern was modified. In AMG, already discussed in
Section 5, three patterns include MPI_ANY_SOURCE. For each
pattern it was enough to enclose the function that contains
it between a BEGIN_ITERATION and an END_ITERATION call.

Execution time presented in this section is the mean time
over five executions of a test. The performance of SPBC,
either failure-free or in recovery, is always compared to the
native performance of the application running with the un-
modified version of MPICH-3.0.2. The results are normal-
ized to the native performance for the reference. Note that
none of our experiments include checkpointing. The per-
formance of checkpointing has been extensively studied in
other papers [3, 27]. We simply recall that in SPBC the co-
ordinated checkpoints of the different clusters can be taken
independently. The goal of our evaluation is to assess the
impact of message logging on performance.

To obtain the clustering configuration used in the evalu-
ation, we ran each application for a few iterations and col-
lected its communication statistics data. Then, we use the
clustering tool presented in [30] to generate clustering config-
uration that minimizes the amount of data to log. All MPI
processes executing on the same physical node are included
in the same cluster. Indeed, providing failure containment
inside a node would be useless since a node failure will result
in the crash of all processes executing on that node.

6.2 Message Log Size
We start by evaluating how the size of the logs grows de-

Nb of AMG CM1 GTC MILC MiniFE MiniGhost
Clusters Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
2 0.1 0.4 0.1 0.8 0.1 0.9 0.1 0.1 0.1 0.1 0.3 1.1
4 0.2 0.7 0.1 0.7 0.1 0.9 0.1 0.1 0.1 0.2 0.5 2.1
8 0.4 0.7 0.2 1.5 0.2 0.9 0.2 0.2 0.1 0.3 1.1 2.1
16 0.5 0.7 0.4 1.5 0.4 0.9 0.2 0.3 0.1 0.3 1.6 2.1
64 1.2 1.4 1.5 2.2 1.7 1.7 0.4 0.4 0.2 0.3 3.7 4.2
512 1.7 2 2.8 2.9 1.7 1.8 0.6 0.6 0.5 0.6 5.5 6.3

Table 1: Logs growth rate per process in MB/s according to the number of clusters

pending on the number of clusters that are used with SBPC.
As we will see in Section 6.4, this information is important
to understand the performance of SPBC in recovery. We
recall that logs are saved as part of the process checkpoints,
and that, the associated memory can be freed afterwards.

Each application was run with 512 processes. Table 1
presents the speed with which the message logs grow per
MPI process in MB/s for each application and for each clus-
tering configuration. The table includes the average (Avg)
and maximum (Max) growth rate observed for processes in
different tests. To be able to assess the impact of clustering,
the table also includes pure message logging, i.e. 512 clus-
ters, and the case where all inter-node messages are logged,
i.e. 64 clusters.

Table 1 shows a well-known result [30]: a hybrid approach
provides failure containment while dramatically reducing the
amount of logged data compared to the basic message log-
ging protocol. In the case of MiniGhost which is the most
communication intensive application, using 16 clusters di-
vides the maximum amount of data to log per process by
3(2.1MB/s vs 6.3MB/s) while ensuring that only 6.25%
(1/16) of the processes will have to restart should a failure
occur. It can also be noticed that on our testbed, logging
all inter-node messages will be in most cases two times as
costly in terms of memory usage per process as having 16
clusters (which corresponds to 4 nodes per cluster).

In addition to these known facts, our experiments show
that the growth rate of the logs is not uniform on all pro-
cesses. Depending on the communication pattern of the
application, some processes log much more data than oth-
ers. Assuming that each process is provided with the same
amount of memory, and that the application memory foot-
print is very similar for all processes, the maximum growth
rate is probably the most important value to consider when
choosing a clustering configuration since this process will run
out of memory first. Note that for all applications and all
numbers of clusters, the growth rate for the processes that
log the least amount of data is always bellow 0.1 MB/s
(except for MILC with more than 8 clusters).

Next, the experiments show that although the average
amount of logged data generally grows with the increase in
the number of clusters, it is not the case for the maximum
logs growth rate. For instance, in the case of GTC, the
maximum growth rate with 16 clusters is not bigger than
with 2 clusters. Therefore, the configuration with 16 clus-
ters seems to be better than the one with only 2 clusters.
This might be partially due to the fact that the clustering
technique we used aims at minimizing the total amount of
data logged [30]. Other techniques that minimize the maxi-
mum growth rate of the logs should be studied. However it
should still be noticed that even in the case of basic message
logging or when all inter-node messages are logged, logging

can be unbalanced between processes.

6.3 Failure-Free Performance
We evaluate the overhead introduced by SPBC in failure-

free execution by comparing its performance to the perfor-
mance of the native MPICH-3.0.2 library. We run experi-
ments with 2, 4, 8, and 16 clusters. Table 2 presents the
overhead observed with 16 clusters. It is the configuration
that logs most messages, but the overhead is at most 1%.
For lower number of clusters, we observed even smaller over-
head. As it was already shown with other protocols employ-
ing message logging [7, 19, 29], the cost of logging message
payload in the sender’s memory has almost no impact on
failure-free execution. We refer the reader to [19] for an eval-
uation of our logging technique over a network with higher
performance (Myrinet MX-10G): The observed performance
is similar to the one presented in Table 2.

AMG CM1 GTC MILC MiniFE MiniGhost
0.26% 0.63% 1.14% 0.07% 0.08% 0.36%

Table 2: failure-free overhead of SPBC in percent
(16 clusters)

6.4 Recovery Performance
The goal of the experiments we present is to evaluate the

time needed to re-execute the computation lost due to a
failure, i.e. the rework time, and to compare it with the
time needed to do the same computation during a failure-
free execution. Due to current limitation of our prototype
(no support for partial restart), we cannot simulate failures.
Instead, we evaluate our protocol in recovery in the follow-
ing way. We first execute the application with the chosen
clustering configuration once to generate the logs and we
save them to the local storage of the nodes. Then we restart
the application and simulate the recovery of one cluster (the
cluster including rank 0). It means that only the processes
of this cluster are really executed. Other processes simply
read the log files at the beginning of the execution, compute
the lists of logged messages to be replayed and then start re-
playing them using the data available on the disk. If partial
restart were already supported by SPBC, the processes of
the non-failed clusters would not restart and would have all
logged messages required for the recovery available in their
memory. Note that if non-failed processes could continue
progressing without waiting for the rolled-back ones to re-
cover, it could impact recovery performance since these pro-
cesses would not be always available to replay logged mes-
sages. However, it is not the case with the applications we
consider since the processes are tightly coupled: Non-failed
processes will need messages from the recovering processes

to progress. That is why we decided not to study this case.
Note also that we do not evaluate the time required to re-
store the rolled back processes’ state from the last checkpoint
- this time is the same for any hybrid protocol.

Figure 5 shows the performance results in recovery with
2, 4, 8 and 16 clusters. In all cases, the rework time is lower
than the failure-free execution time with MPICH. Processes
can execute faster in recovery for two reasons. First they can
skip the sending of inter-cluster messages. Second, when
small messages are replayed from logs, they may be sent
in advance during recovery, and so, be available to the re-
ceiver immediately when it tries to receive them. These two
reasons explain why for configurations with smaller clusters
where the amount of inter-cluster communication is bigger,
the performance in recovery is better. We used the IPM
profiling tool4 to investigate the results in more details.

First, it should be mentioned that the speedup observed in
recovery heavily depends on the computation to communica-
tion ratio of the application, since performance improvement
can only be gained on the communication part. Three of the
applications (CM1, GTC, and MiniFE) spend less that 10%
of their time on communication and consequently recovery
was at best only 4% faster than the failure-free execution.
On the contrary, AMG spends more than 50% of its time on
communication and achieves a maximum speedup of 25%
in recovery. However, there are other factors that impact
recovery performance. Even when the communication ratio
is high, if the most time is spent in intra-cluster communi-
cation, then only a small speedup can be expected. This is
what we observed in MILC and MiniGhost. AMG, on the
contrary, was spending a lot of time in inter-cluster commu-
nication during the failure-free execution. Finally, it should
also be mentioned that the performance in recovery is lim-
ited by the slowest process to recover. For instance, in the
case of CM1, one process in the cluster does not communi-
cate with processes from other clusters. It means that this
process does not execute faster during recovery, and so, it
limits the recovery performance.

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

AMG CM1 GTC MILC MiniFE MiniGhost

N
o

rm
a
li

z
e
d

 E
x

e
c
u

ti
o

n
 T

im
e

MPICH

2 clusters

4 clusters

8 clusters

16 clusters

Figure 5: Performance of SPBC in Recovery

6.5 Distributed vs Centralized Recovery
We compared SPBC with HydEE [19]. To our knowledge,

this is the only other existing protocol providing failure con-
tainment without logging any information reliably during
the failure-free execution. HydEE requires the use of an
additional process (the coordinator) to orchestrate the re-
covery and avoid mismatches: it notifies a process that it
can replay the next message from logs once the recovering

4http://ipm-hpc.sourceforge.net/

processes have acknowledged that all the inter-cluster mes-
sages that this message depends on have been replayed.

We could only use some of the NAS benchmarks (BT, LU,
MG, SP) for this experiment because of the limitations of
the HydEE prototype. Results are presented in Figure 6. All
tests are run with 512 MPI ranks partitioned into 8 clusters.
The Figure shows recovery time normalized to failure-free
execution with MPICH. As we see, SPBC noticeably (up to
factor of 2) outperforms HydEE, which in some cases runs
even slower than the failure-free execution. The reason for
this slowdown is the impact of the centralized coordination
between processes during recovery.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

BT LU MG SP

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

MPICH
HydEE
SPBC

Figure 6: Comparison of the performance of HydEE
and SPBC in recovery (8 clusters)

6.6 Discussion
The results presented in this section demonstrate the ef-

ficiency of SPBC both in failure-free execution and in re-
covery. Despite the limited scale of our testbed, we think
that the presented experiments show the benefits of our ap-
proach. The performance of HydEE at larger scale could
only get worse because of the centralized coordination algo-
rithm it requires for recovery. On the other hand, the fully
distributed design of SPBC can be observed in Algorithm 1:
The whole algorithm (failure-free and recovery) is applied
independently on each communication channel. This will
allow SPBC to scale to a high number of nodes.

The experiments with SPBC also show that the use of
a hierarchical checkpointing protocol involves some trade-
offs. Smaller clusters may allow recovering faster because of
larger number of inter-cluster messages. But it also means
that more data is logged, and so, that the protocol has a
larger memory footprint. It would be interesting to study
to which extent logging more messages can be beneficial for
recovery. Note also that the clustering strategy we used in
this paper is probably not the best one for recovery perfor-
mance since it aims at minimizing the total amount of data
logged, resulting in very imbalanced configurations with re-
spect to logging: Inside one cluster some processes have a
lot of communication with other clusters while others do
not have any. A clustering strategy that would provide more
balanced configurations might be beneficial for recovery per-
formance. Studying all these questions is part of our future
work.

7. THE CASE OF HYBRID PROGRAMMING
MODELS

The results presented in Section 6 make SPBC an ap-
pealing solution for fault tolerance at large scale. How-
ever, SPBC assumes an MPI-only model. The current trend

in supercomputer architectures is increasing the number of
cores per node. As a consequence, the MPI-only model
used by many production scientific applications is being re-
placed by a hybrid model where one MPI process per node
is used and intra-node parallelism is achieved through multi-
threading [12]. The question whether the property our pro-
tocol relies on, namely channel-determinism, will remain
valid for hybrid applications is open but we will now try
to answer it partially. For now we cannot give a complete
answer because we could not get access to a sufficient num-
ber of applications that use MPI + Threads. We also note
that the discussion on the support for multi-threading in the
context of MPI-3 is still open [1].

We discuss the two main levels of support for
threads described in the latest MPI specification:
MPI_THREAD_FUNNELED and MPI_THREAD_MULTIPLE. In
MPI_THREAD_FUNNELED, a single thread is allowed to execute
MPI calls. Legacy applications that combine MPI and
OpenMP often use this mode. In this case, only computa-
tions are parallelized over multiple OpenMP threads, and
so, it does not impact the communication behavior of the
application5. Thus, SPBC will work for such applications
as is.

In the case of MPI_THREAD_MULTIPLE, all threads may ex-
ecute MPI calls. Since we only got access to few such ap-
plications we cannot draw general conclusions. However, we
noticed that in many cases programmers try to use some
mechanisms, namely communicators or tags, to differentiate
between messages sent by different threads of the same MPI
process. If communicators are used, our protocol could be
used as is, of course assuming that threads have a channel-
deterministic behavior, since we defined a channel in the
context of a communicator. If tags are used and multi-
ple threads can send over the same channel then channel-
determinism will be lost: We cannot assume a total order of
the messages sent on a channel anymore. Assuming that the
application keeps some form of determinism, the problem is
then finding out which messages need to be resent on which
channel if a recovery takes place. One possible solution is to
associate a sequence number with each (channel,tag) tuple
instead of a single sequence number per channel as in the
current version of SPBC. An alternative would be to gener-
alize the use of pattern descriptions in the code so that after
a failure, each process could precisely say which iteration
of which pattern it is currently executing. Such solutions
would need to be studied further.

8. CONCLUSION
Focusing on the properties of MPI HPC applications, we

presented a checkpointing protocol that combines an un-
precedented set of features. Our evaluations run with a
representative set of HPC workloads show that (i) it pro-
vides almost no overhead in failure-free execution (consid-
ering only the overhead of message logging), (ii) it allows
recovering efficiently after a failure, and (iii) it provides per-
fect failure containment. The combination of these three
properties makes SPBC a good candidate for fault tolerance
at extreme scale. It may require some modifications of the
applications, but our experience shows that these changes
are usually small and easy to apply.

5Except if introducing multi-threading changes the result of
some computation (round-off errors, etc.).

To achieve these results, we identified a property common
to many HPC applications, namely channel-determinism,
and designed a protocol that makes use of this property.
Instead of a solution that would work for all message pass-
ing applications, we find a solution that can be very effi-
cient for many HPC use-cases. Additionaly, we introduced
the always-happens-before relation as a new partial order
relation on the events of a channel-deterministic applica-
tion. The always-happens-before relation expresses the fact
that MPI HPC applications are mostly composed of a set of
well-defined computation steps that may include several it-
erations, and that, in each of these iterations, a well-defined
set of communications is involved. The channel-determinism
acknowledges that the execution of a process in most scien-
tific applications does not depend on the relative order of
messages received from different sources.

We think that taking the properties of target applications
into account is the way to design fault tolerance solutions
that can cope with the scale and failure rate of future exas-
cale systems. In some sense, this approach is similar to the
one adopted by application-based fault tolerance [13]. This
paper illustrates how such an approach can be applied to
checkpointing protocols.

9. ACKNOWLEDGEMENTS
The authors would like to thank Darko Petrović for

his useful comments. Experiments presented in this pa-
per were carried out using the Grid’5000 experimental
testbed, being developed under the INRIA ALADDIN de-
velopment action with support from CNRS, RENATER
and several Universities as well as other funding bodies
(see https://www.grid5000.fr). This work was supported
by INRIA-Illinois-ANL Joint Laboratory for Petascale Com-
puting and the ANR RESCUE project.

10. REFERENCES
[1] Mpi3 hybrid working-group.

[2] A. H. Baker, R. D. Falgout, and U. M. Yang. An
assumed partition algorithm for determining processor
inter-communication. Parallel Computing,
32(5-6):394–414, June 2006.

[3] L. Bautista-Gomez, N. Maruyama, D. Komatitsch,
S. Tsuboi, F. Cappello, S. Matsuoka, and
T. Nakamura. FTI: high performance Fault Tolerance
Interface for hybrid systems. In IEEE/ACM
SuperComputing 2011, Seatle, USA, November 2011.

[4] L. Bautista-Gomez, T. Ropars, N. Maruyama,
F. Cappello, and S. Matsuoka. Hierarchical Clustering
Strategies for Fault Tolerance in Large Scale HPC
Systems. In IEEE Cluster 2012, 2012.

[5] A. Bouteiller, G. Bosilca, and J. Dongarra.
Redesigning the Message Logging Model for High
Performance. Concurrency and Computation :
Practice and Experience, 22:2196–2211, 2010.

[6] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier,
and F. Cappello. Impact of Event Logger on Causal
Message Logging Protocols for Fault Tolerant MPI. In
Proceedings of the 19th IEEE InternationalParallel
and Distributed Processing Symposium (IPDPS’05),
volume 1, page 97, April 2005.

[7] A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra.
Correlated Set Coordination in Fault Tolerant

Message Logging Protocols. In Proceedings of the 17th
international conference on Parallel processing,
Euro-Par’11, pages 51–64, 2011.

[8] A. Bouteiller, T. Ropars, G. Bosilca, C. Morin, and
J. Dongarra. Reasons for a Pessimistic or Optimistic
Message Logging Protocol in MPI Uncoordinated
Failure Recovery. In IEEE International Conference
on Cluster Computing (Cluster 2009), New Orleans,
USA, 2009.

[9] F. Cappello, A. Guermouche, and M. Snir. On
Communication Determinism in Parallel HPC
Applications. In 19th International Conference on
Computer Communications and Networks (ICCCN
2010), 2010.

[10] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim,
D. H. Yoon, L. Kaplan, and M. Erez. Containment
Domains: A Scalable, Efficient, and Flexible Resilience
Scheme for Exascale Systems. In IEEE/ACM
SuperComputing 2012, SC ’12, pages 58:1–58:11, 2012.

[11] J. Dongarra, P. Beckman, T. Moore, et al. The
international exascale software project roadmap.
International Journal of High Performance Computing
Applications, 25:3–60, 2011.

[12] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In
Proceedings of the 17th European MPI users’ group
meeting conference on Recent advances in the message
passing interface, EuroMPI’10, pages 11–20, 2010.

[13] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and
J. Dongarra. Algorithm-based fault tolerance for dense
matrix factorizations. In Proceedings of the 17th ACM
SIGPLAN symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 225–234,
2012.

[14] E. N. Elnozahy et al. System Resilience at Extreme
Scale. Technical report, DARPA, 2008.

[15] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson. A Survey of Rollback-Recovery Protocols in
Message-Passing Systems. ACM Computing Surveys,
34(3):375–408, 2002.

[16] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges,
and D. Arnold. Evaluating the Viability of Process
Replication Reliability for Exascale Systems. In
IEEE/ACM SuperComputing 2011, pages 44:1–44:12,
2011.

[17] D. Fiala, F. Mueller, C. Engelmann, R. Riesen,
K. Ferreira, and R. Brightwell. Detection and
correction of silent data corruption for large-scale
high-performance computing. In IEEE/ACM
SuperComputing 2012, pages 78:1–78:12, 2012.

[18] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and
F. Cappello. Uncoordinated Checkpointing Without
Domino Effect for Send-Deterministic Message
Passing Applications. In 25th IEEE International
Parallel & Distributed Processing Symposium
(IPDPS2011), Anchorage, USA, 2011.

[19] A. Guermouche, T. Ropars, M. Snir, and F. Cappello.
HydEE: Failure Containment without Event Logging
for Large Scale Send-Deterministic MPI Applications.

In 26th IEEE International Parallel & Distributed
Processing Symposium (IPDPS2012), Shanghai,
China, 2012.

[20] V. E. Henson and U. M. Yang. BoomerAMG: a
parallel algebraic multigrid solver and preconditioner.
Applied Numerical Mathematics, 41(1):155–177, Apr.
2002.

[21] D. B. Johnson and W. Zwaenepoel. Sender-Based
Message Logging. In Digest of Papers: The 17th
Annual International Symposium on Fault-Tolerant
Computing, pages 14–19, 1987.

[22] R. Koo and S. Toueg. Checkpointing and
Rollback-Recovery for Distributed Systems. In
Proceedings of 1986 ACM Fall joint computer
conference, ACM ’86, pages 1150–1158, 1986.

[23] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the
ACM, 21(7):558–565, 1978.

[24] T. Mattson, B. Sanders, and B. Massingill. Patterns
for Parallel Programming. Addison-Wesley
Professional, 2004.

[25] E. Meneses, C. L. Mendes, and L. V. Kale.
Team-based Message Logging: Preliminary Results. In
3rd Workshop on Resiliency in High Performance
Computing (Resilience) in Clusters, Clouds, and Grids
(CCGRID 2010), May 2010.

[26] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard.
www.mpi-forum.org, 1995.

[27] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d.
Supinski. Design, Modeling, and Evaluation of a
Scalable Multi-level Checkpointing System. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
2010.

[28] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam,
M. R. Varela, R. Riesen, and P. C. Roth. Modeling
the Impact of Checkpoints on Next-Generation
Systems. In MSST ’07: Proceedings of the 24th IEEE
Conference on Mass Storage Systems and
Technologies, pages 30–46, 2007.

[29] R. Riesen, K. Ferreira, D. Da Silva, P. Lemarinier,
D. Arnold, and P. G. Bridges. Alleviating scalability
issues of checkpointing protocols. In IEEE/ACM
SuperComputing 2012, SC ’12, pages 18:1–18:11, 2012.

[30] T. Ropars, A. Guermouche, B. Uçar, E. Meneses,
L. V. Kalé, and F. Cappello. On the Use of
Cluster-Based Partial Message Logging to Improve
Fault Tolerance for MPI HPC Applications. In
Proceedings of the 17th international conference on
Parallel processing, Euro-Par’11, pages 567–578, 2011.

[31] T. Ropars and C. Morin. Active optimistic and
distributed message logging for message-passing
applications. Concurrency and Computation: Practice
and Experience, 23(17):2167–2178, 2011.

